Q 01 A bullet fired at an angle of 30° with the horizontal hits the ground 3.0 km away. By adjusting its angle of projection, can one hope to hit a target 5.0 km away? Assume the muzzle speed to the fixed, and neglect air resistance.

Angle of projection, θ = 30°

Acceleration due to gravity, $g = 9.8 \text{m/s}^2$

Horizontal range for the projection velocity u_0 , is given by the relation:

$$R=rac{u^2\sin2 heta}{g}$$
 $3000=rac{u_0^2}{g}\sin60^\circ$ $3000=rac{u_0^2}{g} imesrac{\sqrt{3}}{2}$ $rac{u_0^2}{g}=2\sqrt{3} imes1000$ (i)

The maximum range (R_{max} is achieved by the bullet when it is fired at an angle of 45° with the horizontal)

$$\mathrm{R}_{\mathrm{max}} = rac{\mathrm{u}_0^2}{q}$$
(ii)

On comparing equations (i) and (ii), we get:

$$R_{\text{max}} = 2\sqrt{3} \times 1000 = 2 \times 1.732 \times 1000 = 3.46 \ km$$

Hence by keeping the same muzzle speed u, one can not hit a target which is 5 km away just by changing projection angle.